Лекция 4
ГЛАВА 4. Работа с типами
Что мы рассмотрим:
· Интерфейсы
· Классы
· Классы данных
· Модификаторы доступа
· Объявления объектов
Kotlin, как и Java, является объектно-ориентированным языком на основе классов. Он использует интерфейсы и классы для определения пользовательских типов. То, как Kotlin работает с типами, будет очень похоже на то, как мы работали на Java, но есть также некоторые области, в которых Kotlin не будет чувствовать, что мы находимся на знакомой земле. В этой главе мы исследуем эти сходства и различия.
Интерфейсы
Базовая форма интерфейса в Kotlin, как и в Java, выглядит примерно так, как код в листинге 4-1.
Листинг 4-1. Интерфейсный факс
interface Fax {
 fun call(number: String) = println("Calling $number")
 fun print(doc: String) = println("Fax:Printing $doc")
 fun answer()
}

Он по-прежнему использует ключевое слово interface, а также содержит абстрактные функции. Что примечательно в интерфейсах Kotlin, так это то, что они могут
(1) содержать свойства и
(2) иметь функции с реализациями - другими словами, конкретные функции.
Хотя Java 8 действительно допускала реализации по умолчанию на Java, так что последний вариант больше не является уникальным для Kotlin, но все же довольно полезен, как мы увидим позже. Не беспокойтесь о интерфейсах со свойствами - вы к этому привыкнете. Хотя мы не будем рассматривать свойства в этом разделе (пока), мы вернемся к ним в следующем разделе (классы). Для реализации интерфейса Kotlin использует оператор двоеточия, как показано в листинге 4-2.
Листинг 4-2. Класс MultiFunction, реализующий факс
class MultiFunction : Fax { ➊
 override fun answer () { ➋
 }
}

➊ Вместо ключевого слова Java Implements используется оператор двоеточия. Двоеточие также используется для наследования классов.
➋ Мы должны предоставить реализацию для функции answer (), потому что для нее не было реализации в определении интерфейса.
С другой стороны, нам не нужно предоставлять реализацию для call () и print (), потому что они имеют реализацию в определении интерфейса. Вы также можете заметить, что мы используем ключевое слово override в этой функции. Его использование необходимо для того, чтобы прояснить компилятору, что мы не собираемся скрывать или затенять функцию answer () в определении интерфейса. Скорее, мы намерены заменить его, чтобы он был полиморфным. Мы хотим предоставить собственное поведение для функции answer () в этом классе.
Вам может быть интересно, почему Kotlin позволяет нам предоставлять реализации внутри интерфейсов. Разве интерфейсы не должны содержать только абстрактные функции и оставлять реализацию классам, которые будут реализовывать интерфейс? Таким образом, вы можете обеспечить соблюдение контрактов между типами. Что ж, на заре Java интерфейсы использовались именно так; они были чисто абстрактной конструкцией. Однако, начиная с Java 8, вы уже можете предоставлять реализации по умолчанию для интерфейсов.
Есть несколько практических причин, почему это было разрешено. Реализация интерфейсов по умолчанию позволила бы нам со временем развивать интерфейсы. Представьте, если бы мы сегодня написали интерфейс Foo с функциями-членами a (), b () и c (), и он был бы предоставлен другим разработчикам. В будущем, если мы добавим функцию d () к интерфейсу Foo, все коды, которые использовали Foo, теперь не работают. Однако, если мы предоставим реализацию по умолчанию для d (), тогда существующие коды не должны сломаться. Это один из вариантов использования, когда может быть полезна реализация функции в интерфейсе.

Листинг 4-4. Проблема с алмазом, решена
interface A {
 fun foo() {
 println("A:foo")
 }
}
interface B {
 fun foo() {
 println("B:foo")
 }
}
class Child : A, B {
 override fun foo () {
 println("Child:foo")
 }
}
fun main(args: Array<String>) {
 var child: Child = Child()
 child.foo()
}

Вызов суперповедения
Как и в Java, функции Kotlin могут вызывать функции своего супертипа, если у него есть реализация. Также, как и в Java, Kotlin для этого использует ключевое слово super. Ключевое слово super в Kotlin означает то же, что и в Java, - это ссылка на экземпляр супертипа. Чтобы вызвать функцию для супертипа, вам понадобятся три вещи:
(1) ключевое слово super;
(2) имя супертипа, заключенное в пару угловых скобок; и
(3) имя функции, которую вы хотите вызвать в супертипе.
Это похоже на фрагмент кода здесь:
super <NameOfSuperType> .functionName ()
Давайте расширим наш пример «Факс и многофункциональное устройство», приведенный ранее в этой главе.
Листинг 4-5. Возможность печати, факс и многофункциональность
interface Printable {
 fun print(doc:String) = println("Printer:Printing $doc")
}
interface Fax {
 fun call(number: String) = println("Calling $number")
 fun print(doc: String) = println("Fax:Printing $doc")
 fun answer() = println("answering")
}
class MultiFunction : Printable, Fax {
 override fun print(doc:String) {
 println(“Multifunction: printing”)
 }
}

В листинге 4-5 показан предыдущий пример «Факс и мультифункциональность». Мы добавили новый интерфейс Printable, который также определяет функцию print (). В нашем обновленном листинге кода показан класс MultiFunction, унаследованный как от интерфейса Fax, так и от нового интерфейса Printable. Класс MultiFunction переопределяет функцию print (); так и должно быть, потому что функция print () наследуется от интерфейсов Printable и Fax и имеет реализации по умолчанию для обоих.
Переопределенная функция print () в MultiFunction имеет простой оператор println.
Чтобы продемонстрировать, как вызвать функцию для супертипа, мы вызовем функцию print () для обоих супертипов из переопределенного print () в MultiFunction.
В листинге 4-6 показано, как это сделать.
Листинг 4-6. Многофункциональность, вызов функций по супертипу
class MultiFunction: Printable, Fax {
override fun print(doc:String) {
 super<Fax>.print(doc)
 super<Printable>.print(doc)
 println("Multifunction: printing")
}
}

Теперь, когда мы вызываем функцию print (), она вызывает print () в Fax, затем в Printable и, наконец, любые операторы, оставшиеся в переопределенной print () в MultiFunction. Листинг 4-7 показывает полные коды для этого примера.

Листинг 4-7. Многофункциональность, печать и факс
interface Printable {
 fun print(doc:String) = println("Printer:Printing $doc")
}
interface Fax {
 fun call(number: String) = println("Calling $number")
 fun print(doc: String) = println("Fax:Printing $doc")
 fun answer() = println("answering")
}
class MultiFunction : Printable, Fax {
 override fun print(doc:String) {
 super<Fax>.print(doc)
 super<Printable>.print(doc)
 println("Multifunction: printing")
 }
}
fun main(args: Array<String>) {
 val mfc = MultiFunction()
 mfc.print("The quick brown fox")
 mfc.call("12345")
}

Классы
Класс определяется с помощью (1) ключевого слова class; (2) идентификатор, который будет его именем; (3) необязательный заголовок; и (4) необязательный орган. В листинге 4-8 показан базовый класс.
Листинг 4-8. Базовый класс в Котлине
class Person () {
}

Заголовок класса - пара круглых скобок. Заголовок может содержать параметры, но в этом примере их нет. Пара фигурных скобок составляет тело класса. И заголовок, и тело класса необязательны, но большинство кодов, которые мы будем использовать в книге, будут включать их оба.
Чтобы создать экземпляр класса Person, мы можем написать что-то вроде следующего:
var person = Person ()
Если бы не заметное отсутствие ключевого слова new, это очень похоже на то, как мы бы создавали объекты в Java. Пара круглых скобок после имени типа (Person) - это вызов конструктора без аргументов (ctor). Вернемся немного к листингу 4-8 и подробнее рассмотрим заголовок определения класса. Это одна из немногих областей, куда смотрит Котлин и немного отличается от Java. У классов Java не было заголовков, а у Kotlin есть. Этот заголовок на самом деле является определением конструктора.
Конструкторы
Классы Kotlin могут иметь более одного конструктора в своих определениях. Это не сильно отличается от Java, поскольку его классы также могут содержать более одного ctor. Тем не менее, otlin делает различие между первичным и вторичным конструкторами. Первичный ctor написан в заголовочной части класса, как и тот, который вы видели в листинге 4-8, в то время как вторичные ctor (ы) записываются в теле. В листинге 4-9 показан класс с основным конструктором.
Листинг 4-9. Класс Person с основным конструктором
class Person constructor(_name: String) { ➊
 var name:String ➋
 init { ➌
 name = _name ➍
 }
}

➊ Когда конструктор написан в заголовке класса, как здесь, он является основным конструктором. Этот способ написания ctor по существу такой же, как в нашем примере в листинге 4-8, за исключением того, что листинг 4-8 не содержит ключевого слова constructor, и что здесь (листинг 4-9) наш ctor принимает параметр.
➋ Это переменная-член, который будет содержать значение _name.
➌ Это блок инициализатора, похожий на инициализатор Java. Он выполняется всякий раз, когда создается экземпляр класса. В вашем классе может быть более одного блока инициализатора, и когда это произойдет, инициализаторы будут выполняться в том порядке, в котором они были определены в классе.
Блок инициализатора - это пара фигурных скобок с префиксом ключевого слова init. Обычно они используются, когда единственный конструктор, который у вас есть, является первичным конструктором, поскольку первичные конструкторы не могут содержать какой-либо код (будь то оператор или выражения).
➍ Мы можем получить доступ к аргументам, которые были переданы основному ctor из блока инициализатора.
Когда основной ctor не имеет (или не нуждается) в аннотациях или модификаторах видимости, мы можем опустить ключевое слово конструктора, например:
class Person (_name: String) {
 var name:String
 init {
 name = _name
 }
}

Мы можем еще больше упростить и сократить код, объединив блок инициализации и объявив переменную имени в операторе. Котлин такой умный.
class Person (_name: String) {
 var name:String = _name
}

Конструкторы также могут быть определены внутри тела класса, как это было сделано в Java. Когда они написаны как таковые, они называются вторичными конструкторами.
В листинге 4-10 показан пример кода со вторичным ctor.
Листинг 4-10. Класс сотрудника с вторичным конструктором
class Employee {
 var name:String
 constructor(_name: String) {
 name = _name
 }
}

Обратите внимание, что в листинге 4-11 нам не нужно было использовать блок инициализации, потому что инициализация переменной-члена name была выполнена в теле конструктора. Вторичный ctor, в отличие от первичного ctor, может содержать код.

Листинг 4-11. класс Employee с двумя вторичными конструкторами
class Employee {
 var name:String = "" ➊
 var empid:String = ""
 constructor(_name: String) : this(_name, "1001") ➋
 constructor(_name:String, _id: String) { ➌
 name = _name
 empid = _id
 }
}

➊ Мы должны инициализировать наши переменные-члены, потому что Kotlin не сможет определить, что мы делаем при инициализации.
➋ Вторичный конструктор должен иметь ключевое слово constructor. У этого ctor нет тела; это нормально писать так. Кроме того, этот ctor вызывает другой ctor - тот, который принимает два аргумента.
➌ Другой вторичный конструктор определен для класса Employee. Он принимает два параметра: имя и идентификатор сотрудника.
Вы можете перегрузить свои конструкторы в Kotlin, как мы это сделали в Java, как вы можете видеть в листинге 4-11. А также, как и в Java, мы можем вызывать другие конструкторы с помощью ключевого слова this. Ключевое слово this в Kotlin такое же, как и в Java, оно относится к вашему экземпляру - никаких сюрпризов. Однако обратите внимание, как мы использовали конструкцию this для делегирования вызова другому вторичному конструктору. Вам нужно связать вызов this с определением конструктора, используя двоеточие (см. пункт 2 листинга 4-11).
Хотя Kotlin позволяет нам выполнять параметрический полиморфизм конструкторов с помощью перегрузки, это не совсем идиоматический Kotlin, потому что того же результата можно достичь, используя способность Kotlin предоставлять значения по умолчанию для параметров функции. См. Листинг 4-12 для упрощенной версии примера класса Employee.
Листинг 4-12. Упрощенный класс сотрудников
class Employee (_name: String, _empid: String = "1001") {
 val name = _name
 val empid = _empid
}
Код в листинге 4-12 короче и лаконичнее. Кроме того, перемещение параметров конструктора в основной конструктор позволило нам объявлять переменные-члены, используя val, а не var. Использование неизменяемых переменных является предпочтительной техникой в ​​Kotlin, поскольку она снижает количество ошибок кодирования в целом. Вы не можете случайно изменить значение свойства, если оно изначально неизменяемо.
Наследование
Классы Kotlin по умолчанию являются окончательными, в отличие от классов Java, которые являются «открытыми» или неокончательными.
Код, показанный в листинге 4-13, не компилируется, потому что класс Person является окончательным.
Листинг 4-13. Класс Person и Employee
class Person {
}
class Employee: Person () {
}

Чтобы наш образец кода скомпилировался, мы должны явно сообщить Kotlin, что класс Person открыт, что означает, что мы намереваемся его расширить или унаследовать (см. Листинг 4-14). Такое поведение классов Kotlin по умолчанию считается правильным поведением и хорошей практикой. Перефразируя цитату из книги Джошуа Блоха «Эффективная Java» (Addison-Wesley, 2008): «проектируйте и документируйте для наследования, иначе запретите его».
Фактически это означает, что все классы и методы, которые вы не собираетесь расширять или переопределять, должны быть объявлены как final. В Котлине это автоматическое поведение.
В листинге 4-14 снова показан класс Person, но на этот раз у него есть модификатор open, который означает, что класс Person может быть расширен.
Листинг 4-14. Класс Person и Employee
open class Person {
}
class Employee: Person () {
}
Финальное поведение по умолчанию характерно не только для классов; Функции-члены в Котлине такие же. Когда функция написана без модификатора open, она является окончательной.
Листинг 4-15. Переопределение метода
open class Person(_name:String) {
 val name = _name
 open fun talk() { ➊
 println("${this.javaClass.simpleName} talking")
 }
}
class Employee(_name:String, _empid:String = "1001") : Person(_name) {
 val empid = _empid
 override fun talk() { ➋
 super.talk() ➌
 println("Hello")
 }
 override fun toString():String{ ➍
 return "name: $name | id: $empid"
 }
}

➊ Функции должны быть особо отмечены как открытые, чтобы их можно было переопределить подтипами.
➋ Подтипы должны помечать функцию ключевым словом override, чтобы сделать ее полиморфной. IntelliJ достаточно умен, чтобы предотвратить компиляцию, когда он обнаруживает, что вы определяете функцию для подтипа, имеющего точную сигнатуру для супертипа, без использования ключевого слова override.
➌ Отсюда мы можем вызвать суперповедение; оно эффективно вызывает функцию talk () в классе Person.
➍ Мы переопределяем функцию toString (). Это поведение было унаследовано от класса Person, который, в свою очередь, унаследован от класса Any. Вы можете рассматривать класс Any как аналог класса java.lang.Object.
Вы должны иметь в виду, что, когда функция была помечена как открытая, она останется открытой для переопределения своими прямыми подтипами и даже косвенными подтипами, если функция снова не помечена как окончательная. Чтобы проиллюстрировать это, рассмотрим листинг 4-16.
Листинг 4-16. Класс Человек, Сотрудник и Программист
open class Person(_name:String) {
 val name = _name
 open fun talk() { ➊
 println("${this.javaClass.simpleName} talking")
 }
}
open class Employee(_name:String, _empid:String = "1001") : Person(_name) {
 val empid = _empid
 override fun talk() { ➋
 super.talk()
 println("Employee overriding talk()")
 }
 override fun toString():String{
 return "name: $name | id: $empid"
 }
}
class Programmer(_name:String) : Employee(_name) {
 override fun talk() { ➌
 super.talk()
 println("Programmer overriding talk()")
 }
}

➊ функция talk () помечается как открытая впервые.
➋ Отсюда мы можем переопределить talk ().
➌ Мы все еще можем переопределить talk () отсюда, даже если класс Employee не пометил функцию как открытую. Функция talk () остается неявно открытой через иерархию наследования, если только она не будет отмечена как final где-нибудь в цепочке наследования.
В листинге 4-17 показано, как снова сделать функцию «закрытой» в середине цепочки наследования.
Листинг 4-17. Как снова сделать функцию финальной
open class Person(_name:String) {
 val name = _name
 open fun talk() {
 println("${this.javaClass.simpleName} talking")
 }
}
open class Employee(_name:String, _empid:String = "1001") : Person(_name) {
 val empid = _empid
 override fun talk() {
 super.talk()
 println("Employee overriding talk()")
 }
 final override fun toString():String{ ➊
 return "name: $name | id: $empid"
 }
}

class Programmer(_name:String) : Employee(_name) {
 override fun talk() { ➋
 super.talk()
 println("Programmer overriding talk()")
 }
}

➊ Видеть последнее ключевое слово и ключевое слово override в одной строке кажется немного странным, но это совершенно законно. Это означает, что мы переопределяем функцию и в то же время «закрываем» ее для дальнейшего наследования. Последнее ключевое слово в этой функции влияет только на подтипы класса Employee, но не на сам класс Employee.
➋ Это больше не будет компилироваться.
Свойства
Свойство в классе или объекте обычно создается путем определения переменной-члена и предоставления для нее методов доступа. Эти методы обычно следуют некоторым соглашениям об именах, в которых перед именем переменной-члена будет стоять префикс get и set.
Листинг 4-18. Класс Person в Java с одним свойством
class Person {
 private String name;
 public String getName() {
 return this.name;
 }
 public void setName(String arg) {
 this.name = arg;
 }
 public static void main(String []args) {
 Person person = new Person();
 person.setName("John Doe");
 System.out.println(person.getName());
 }
}

Листинг 4-18 показывает простой класс Java, который определяет единственное свойство с именем name. Это делается путем определения переменной-члена, которая будет оставаться закрытой, так что доступ к этому состоянию будет контролироваться только через методы доступа - getName () и setName (). Этот вид кодирования является идиоматическим в Java, поскольку в нем нет поддержки свойств на собственном языке. Мы все еще можем следовать этому стилю кодирования в Kotlin, но в этом нет необходимости, потому что в Kotlin есть языковая поддержка свойств.
Если бы мы переписали листинг 4-18 на Kotlin, это было бы похоже на код в листинге 4-19.
Листинг 4-19. Класс Person с одним свойством
class Person(_name:String) { ➊
 val name:String = _name ➋
}
fun main(args: Array<String>) {
 var person = Person("John Smith")
 println(person.name) ➌
}

➊ Конструктор принимает параметр. Это позволяет нам установить имя объекта в момент создания.
➋ У нас есть отсюда доступ к параметрам через конструктор.
➌ Может показаться, что мы получаем прямой доступ к переменной-члену имени, но это не так. Фактически это вызывает метод доступа get.
Определение класса Person в листинге 4-19 можно упростить до определения в листинге 4-20.
Листинг 4-20. Упрощенный класс Person
класс Person (имя val: String)
fun main (args: Array <String>) {
 var person = Person ("Джон Смит")
 Println (person.name)
}

Код здесь - это наиболее краткий способ определения свойства в Kotlin. Это тоже считается идиоматическим. Обратите внимание на изменения, которые мы внесли в код:
1. Параметр в основном конструкторе теперь имеет объявление val. Это фактически делает параметр конструктора свойством. Мы могли бы использовать var, и он тоже сработал бы.
2. Нам больше не нужно различать идентификатор в параметре конструктора с переменной-членом; поэтому мы опустили верхний знак подчеркивания в переменной _name.
3. Мы можем отбросить все тело класса, так как нам не нужно это больше. Тело класса содержит только код для передачи значения параметра конструктора переменной-члену.
Поскольку Kotlin автоматически определит резервное поле для параметра конструктора, нам больше не нужно ничего делать в теле класса.
Код в листинге 4-20 показывает самый простой способ определения объектов данных в Kotlin (Java-программисты называют их POJO или простой старый объект Java). Просто используя val или var в параметрах первичного конструктора, мы можем автоматически определять свойства с помощью соответствующих методов мутатора. Однако все же будут ситуации, когда вам нужно будет больше контролировать процесс «получения» и «настройки» этих свойств. Котлин позволяет нам это делать.
Мы можем взять на себя автоматический процесс «получения» и «установки», выполнив следующие действия:
1. Объявите свойство в теле класса, а не в первичном конструкторе.
2. Предоставьте методы получения и установки в теле класса.
Полный синтаксис объявления свойства следующий:
var <название свойства>: [<тип свойства>] [= <инициализатор>]
[<getter>]
[<setter>]

В листинге 4-21 показано базовое использование пользовательских методов доступа.
Листинг 4-21. Пользовательские методы доступа
class Employee {
 var name: String = "" ➊
 get() { ➋
 Log("Getting lastname") ➌
 return field ➍
 }
 set(value) { ➎
 Log("Setting value of lastname")
 field = value ➏
 }
}
fun Log(msg:String) {
 println(msg)
}
fun main(args: Array<String>) {
 var emp = Employee()
 emp.name = "John Doe" ➐
 println(emp.name) ➑
}

➊ Мы объявляем и определяем свойство внутри тела класса вместо того, чтобы фиксировать его как параметр в основном конструкторе. Сначала мы инициализируем его пустой строкой.
➋ Синтаксис get () очень похож на синтаксис определения функции, за исключением того, что мы не пишем перед ним ключевое слово fun.
➌ Здесь вы пишете свой собственный код. Этот оператор будет выполняться каждый раз, когда кто-то пытается получить доступ к свойству name.
➍ Ключевое слово field - особенное. Это поле поддержки, которое Kotlin автоматически предоставляет, когда мы определяем свойство с именем name. Переменная-член имени не является простой переменной; Kotlin создает для него автоматическое резервное поле, но у нас нет прямого доступа к этой переменной. Однако мы можем получить к нему доступ через ключевое слово field, как мы сделали здесь.
➎ Параметр значения соответствует значению, которое будет присвоено свойству после создания объекта «Сотрудник» (см. маркер ➐).
➏ После того, как мы выполнили нашу собственную логику, теперь мы можем установить значение поля.
➐ Это запустит нашу логику набора средств доступа, см. пункт ➎.
➑ Это запустит нашу логику получения доступа, см. пункт ➋.
Вам может быть интересно, почему мы используем ключевое слово field в методах получения и установки. Почему нельзя было просто закодировать методы доступа, как в Java (см. Листинг 4-22)? Это неправильный способ кодирования геттеров и сеттеров для свойств.
class Employee {
 var name: String = ""
 get() {
 Log("Getting lastname")
 return this.name ➊
 }
 set(value) {
 Log("Setting value of lastname")
 this.name = value ➋
 }
}

➊ Это приводит к рекурсивному вызову, который в конечном итоге вызывает ошибку StackOverflowError.
➋ То же самое. В листинге 4-22 выражение this.name на самом деле не обращается к имени переменной-члену. Вместо этого он вызывает методы доступа по умолчанию, которые Kotlin предоставляет автоматически, когда вы определяете свойство для класса. Итак, вызов this.name из функции аксессора приведет к штопору рекурсивных вызовов, и в конечном итоге среда выполнения выдаст StackOverflowError. Чтобы этого не происходило, вы должны использовать ключевое слово field при обращении к вспомогательному полю имени свойства из функции доступа.
Классы данных
Когда создаются POJO, иногда они хранятся в коллекциях (например, ArrayList, HashMap, HashSet и т. д.). А чтобы правильно использовать эти POJO в Java, нам нужно было переопределить методы equals (), hashCode () и toString (). Помните об этом в Java, чтобы мы могли правильно использовать, когда они хранятся в коллекциях, особенно в коллекциях, чувствительных к hashCode.
В предыдущем разделе мы видели, как легко мы можем создать аналог POJO в Kotlin. Мы можем просто определить свойства в наших классах, и все будет в порядке.
Для простых случаев использования объектов данных, которые мы создали в предыдущем разделе, должно быть достаточно. Но когда вам нужно сделать что-то вроде сохранения объектов значений в коллекциях или сравнения объектов друг с другом на предмет равенства содержимого, вы обнаружите, что классов со свойствами недостаточно. Чтобы правильно использовать объекты-значения из объектов коллекции, нам нужно иметь возможность надежно сравнивать объекты друг с другом. В Java мы используем для решения такого рода проблем путем переопределения некоторых методов java.lang.Object, а именно методов equals () и hashCode (). Эти методы играют ключевую роль, когда мы сравниваем объекты.
Листинг 4-22. Сравнение двух объектов сотрудников
fun main(args: Array<String>) {
 val e1 = Employee("John Doe")
 val e2 = Employee("John Doe")
 println(e1 == e2) // output is false
}

Помните, что в Kotlin оператор двойного равенства фактически вызывает функцию equals () сравниваемых операндов, а поскольку все в Kotlin является объектом, все они имеют функцию equals (), поскольку она унаследована от супертипа Any. Если мы позволим классу Employee стоять, как в листинге 4-22, он будет использовать реализацию функции equals () из класса Any, и он не знает, как сравнивать объекты Employee. Чтобы решить эту проблему, мы можем переопределить метод equals () и предоставить реализацию того, как сравнивать объекты Employee.
Примечание. Как и Java, Kotlin следует однокорневому наследованию классов. Если мы не укажем суперкласс в определении класса, класс неявно расширит Any. Этот класс является супертипом всех типов, не допускающих значения NULL, в Kotlin.
Чтобы исправить код в листинге 4-22, мы обычно должны переопределить функции equals () и hashCode (), как показано в листинге 4-23.
Листинг 4-23. Переопределение функций hashCode () и equals ()
import java.util.*
class Employee(val name:String){
 override fun equals(obj:Any?):Boolean { ➊
 var retval = false
 if(obj is Employee) { ➋
 retval = name == obj.name ➌
 }
 return retval
 }
 override fun hashCode(): Int { ➍
 return Objects.hash(name)
 }
}
fun main(args: Array<String>) {
 val e1 = Employee("John Doe")
 val e2 = Employee("John Doe")
 println(e1) ➎
 println(e1 == e2) ➏
}

➊ Функция equals () в классе Any открыта, мы можем ее переопределить.
➋ Сначала мы проверяем, сравниваем ли мы объект Employee с другим объектом Employee. Ключевое слово is выполняет две функции:
(1) оно проверяет, действительно ли obj является экземпляром Employee, и
(2) он автоматически приводит obj к объекту Employee.
➌ Obj автоматически приводится к объекту Employee. Ключевое слово is уже сделало это. Теперь мы можем безопасно сравнить имена переменных-членов двух объектов.
➍ Переопределение функции hashCode () обычно требуется, если вы собираетесь хранить этот объект в коллекциях, где сравнение хэш-кода является существенным (например, HashSet, HashMap и т. д.). Для нашего небольшого примера в этом нет необходимости. Но рекомендуется переопределять функцию hashCode () всякий раз, когда вы переопределяете функцию equals ().
➎ Вызывает функцию toString () объекта Employee. Функция toString () находится в супертипе Any. Реализация toString () по умолчанию дает нам результат примерно такой: «Employee @ ae805cc4».
➏ Теперь она печатает «правда».
Такая практика кодирования очень распространена в Java, и по этой причине довольно много IDE имеют возможность генерировать шаблонный код toString (), equals () и hashCode (). Хотя мы все еще можем делать это в Котлине, в этом нет необходимости. Единственное, что нам нужно сделать в Kotlin, - это сделать Employee классом данных. В листинге 4-24 показано, как это сделать.
Листинг 4-24. Класс данных сотрудника
data class Employee(val name:String) ➊
fun main(args: Array<String>) {
 val e1 = Employee("John Doe")
 val e2 = Employee("John Doe")
 println(e1) ➋
 println(e1 == e2) ➌
}

➊ Чтобы сделать любой класс в Kotlin классом данных, просто используйте ключевое слово data в объявлении класса.
➋ Мы получаем дополнительный бонус в виде более приятного вывода toString () с классами данных. Теперь она печатает «Сотрудник (имя = Джон Доу)».
➌ Кроме того, сравнение equals () возвращает true.
Модификаторы видимости
Kotlin использует почти те же ключевые слова, что и Java, для управления видимостью. Ключевые слова public, private и protected означают в Kotlin то же самое, что и в Java. Но разница в видимости по умолчанию. В Kotlin, когда вы опускаете модификатор видимости, видимость по умолчанию является общедоступной.
Листинг 4-25. Класс Foo
class Foo {
 var bar:String = ""
 fun doSomething() {
 }
}

В листинге 4-25 класс Foo и его члены видны публично. Если вы хотите изменить видимость на что-то менее разрешительное, вы должны заявить об этом явно. В отличие от этого, видимость Java по умолчанию является закрытой для пакета, то есть она доступна только для классов, которые на той же упаковке. Kotlin не имеет эквивалента для частного пакета, потому что Kotlin не использует пакеты как способ управления видимостью. Пакеты в Kotlin - это просто способ упорядочить файлы и предотвратить конфликты имен.
Вместо Java package-private в Kotlin вводится ключевое слово internal, что означает, что оно отображается в модуле. Модуль - это просто набор файлов, он может быть (1) модулем или проектом IntelliJ; (2) проект Eclipse; (3) проект Maven; или (4) проект Gradle. Чтобы продемонстрировать работу некоторых модификаторов видимости, см. Листинг 4-26.
Листинг 4-26. Демонстрация модификаторов видимости
internal open class Foo { ➊
 private fun boo() = println("boo")
 protected fun doo() = println("doo")
}
fun Foo.bar() { ➋
 boo() ➌
 doo() ➍
}
fun main(args: Array<String>) {
 var fu = Foo()
 fu.bar()
}

➊ Класс Foo помечен как внутренний, что делает его видимым только в классах и функциях верхнего уровня, которые находятся в одном модуле и чья видимость также помечена как внутренняя.
➋ Это ошибка. Функция расширения помечена как общедоступная, но получатель функции (Foo) помечен как внутренний. Класс Foo менее заметен, чем функция расширения; следовательно, Котлин не позволяет нам так делать.
➌ boo () является частным для класса, поэтому мы не можем добраться до него отсюда.
➍ doo () защищен, мы не можем добраться до него отсюда.
Чтобы листинг 4-26 работал без проблем, нам нужно исправить ошибки видимости. Листинг 4-27 показывает решение.

Листинг 4-27. class Foo, Исправленные ошибки видимости
internal open class Foo {
 internal fun boo() = println("boo")
 internal fun doo() = println("doo")
}
internal fun Foo.bar() {
 boo()
 doo()
}
fun main(args: Array<String>) {
 var fu = Foo()
 fu.bar()
}

Модификаторы доступа
Модификаторы доступа Kotlin - final, open, abstract и override. Они влияют на наследование. Ранее в этой главе мы использовали final, open и override, поэтому единственное ключевое слово, которое мы не использовали, - абстрактное. Ключевое слово abstract имеет то же значение в Kotlin, что и в Java. Это применимо к классам и функциям.
Когда вы помечаете класс как абстрактный, он также становится неявно открытым, поэтому вам не нужно использовать модификатор open, он становится избыточным. Интерфейсы не нужно объявлять абстрактными и открытыми, поскольку они уже неявно абстрактны и открыты.
Объявления объекта
Ключевое слово static Java не вошло в список ключевых слов Kotlin. В Котлине нет статического эквивалента; вместо него Kotlin вводит ключевые слова object и companion.
Ключевое слово object позволяет нам одновременно определять и класс, и его экземпляр. В частности, он определяет только один экземпляр этого класса, что делает это ключевое слово хорошим способом определения синглтонов в Kotlin. В листинге 4-28 показано базовое использование ключевого слова object.
Листинг 4-28. Использование ключевого слова объекта для определения синглтона
object Util {
 fun foo() = println("foo")
}
fun main(args: Array<String>) {
 Util.foo() // prints "foo"
}

Мы подставляем ключевое слово object вместо ключевого слова class. Фактически это определяет класс и создает его единственный экземпляр. Чтобы вызвать функции, определенные в этом объекте, мы ставим перед точкой (.) имя объекта - почти так же, как мы вызываем статические методы в Java.
Объявления объектов могут содержать большинство вещей, которые вы можете записать в классе, например, инициализаторы, свойства, функции и переменные-члены. Единственное, что вы не можете написать внутри объявления объекта, - это конструктор. Причина в том, что вам не нужен конструктор. Объявление объекта создает экземпляр уже в точке определения, поэтому конструктор не нужен. В листинге 4-29 показано базовое использование и определение объявления объекта.
Листинг 4-29. Инициализаторы, свойства, функции и переменные-члены в объекте
Declarations
object Util {
 var name = ""
 set(value) {
 field = value
 }
 init {
 println("Initializing Util")
 }
 fun foo() = println(name)
}
fun main(args: Array<String>) {
 Util.name = "Bar"
 Util.foo() // prints "Bar"
}

Краткое содержание главы
• Интерфейсы Kotlin почти аналогичны интерфейсам Java, за исключением того, что вы можете объявлять свойства в интерфейсах, хотя им по-прежнему не разрешено иметь поддерживающие поля. Подобно Java 8 интерфейсы Котлин могут иметь значения по усолчанию.
Реализации.
· Классы Kotlin определены немного иначе, чем их аналоги в Java. Классы по умолчанию финальные и публичные.
· В Kotlin есть два типа конструкторов: вы можете определять первичные и вторичные конструкторы. Первичные конструкторы - хороший способ создавать простые объекты значений. Однако для создания действительно полезных объектов-значений можно использовать классы данных Kotlin.
· В Kotlin почти такой же механизм управления видимостью, как и Java, за исключением того, что Котлин заменил Java package-private ключевым словом internal.
[bookmark: _GoBack]В следующей главе мы окунемся в мир функционального программирования.
